

Simons VIP & SETBP1 Society Family Meeting

January 13, 2018

Introductions

Introductions

Lindsey Cartner

Jennifer Tjernagel

Haley Oyler

SETBP1 Society

Presented by Haley Oyler

Thank You

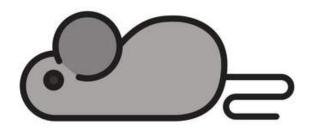
- Simons VIP Connect
 - Dr Wendy Chung
 - Kaitlyn Singer
 - Lindsey Cartner
- Boston Children's Hospital
 - Dr Siddharth (Sid) Srivastava
- Our SETBP1 Families

SETBP1 Society's Mission

Provide support to individuals with SETBPI disorder and their families, to promote discussion and fund research, and to bring awareness and education to the public!

SETBP1 Society's Focus

Find targeted treatments to improve the quality of life for individuals with SETBPI disorder


2017 Highlights

2018 Goals

- Fund 2 Projects
 - Biological Model of SETBP1 disorder

OR

Mouse Model

- Patient Stories from SETBP1 Families A Diagnostic Journey Report
- · How?
 - From 2017 Funds & Funds raised through the RARE Carousel of Possible Dreams fundraiser!

BETHE HOPE BETHE CHANGE

Simons VIP & SETBP1 Society Family Meeting

Wendy Chung, MD, PhD January 13, 2018

Agenda

```
2:20 – 3:00 SETBP1: What we know, Dr. Wendy Chung
```

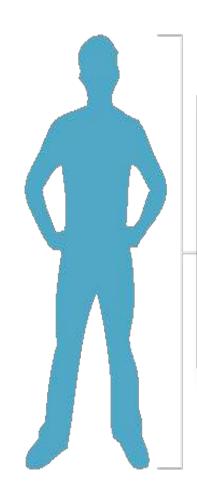
```
3:00-3:10 Questions
```

3:10 – 3:50 Medications in SETBP1, Dr. Sid Srivastava

3:50 - 4:00 Questions

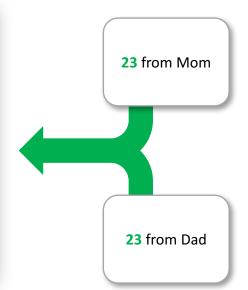
4:00 Meeting/Recording Ends

4:00 – 5:00 Optional Family discussion time



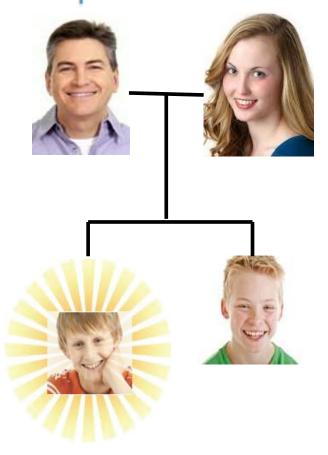
Simons VIP Individuals with SETBP1 Mutation

- Total number of registered, consented participating families, n=5
- Total number of participants with medical history data, n=5
 - 5 male
 - Ages 6 14 years


Our Genome

1 Genome in a human

46 Chromosomes in a Genome

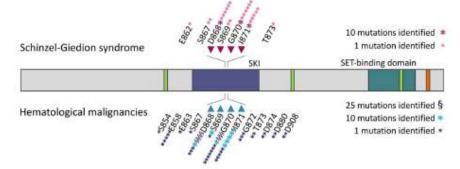

20,000 Genes in your chromosomes

Copyright © 2012 University of Washington

Not all Genetic Conditions Run in Families De novo mutations are common children with neurodevelopmental problems

When do de novo mutations occur?

- In the egg
- In the sperm
- At or shortly after conception
- No way to know
- Recurrence risk of 1% in future pregnancies


SETBP1: one gene but two different conditions

- Gain of function mutations cause Schinzel-Giedion syndrome
- Loss of function mutations cause a different SETBP1 condition that is similar but with distinct differences
- Some loss of function mutations are due to deletions
- Some deletions are specific to SETBP1 but others also delete adjacent genes. The more genes that are deleted, the greater the chance for additional features.
- It's not always possible to predict whether some genetic differences will lead to loss or gain of function

SETBP1 mutations and Schinzel-Giedion

syndrome A

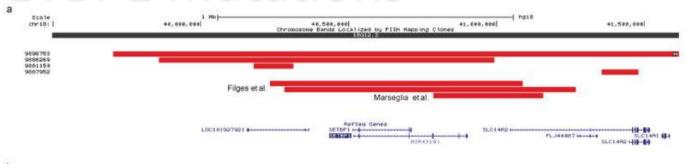
DpSGφXpS/T

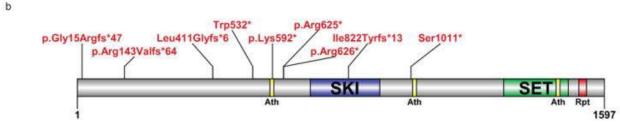
H. sapiens P. troglodytes

B

P. troglodytes M. musculus

G. gallus X. tropicalis


X. tropicali D. rerio PVSESHSEETIPSDSGIGTDNNSTSDQAEKSS PVSESHSEETIPSDSGIGTDNNSTSDQAEKSS PVSESHSEETIPSDSGIGTDNNSTSDQAEKSS PVSESHSEETIPSDSGIGTDNNSTSDQAEKSS PISESHSEETIPSDSGIGTDNNSTSDQAEKSS PVSESHSEETIPSDSGIGTDNNSTSDQAEKSS PVSESHSEETIPSDSGIGTDNNSTSDQTEKGP



Acuna-Hidalfo R, et al. *PLoS Genet.* 2017 Mar 27;13(3):e1006683. doi: 10.1371

Other SETBP1 mutations

C

Table 4 Brief phenotypic description of cases with SETBP1 loss-of-function variants

Case	Age at examination	Sex	Alteration	Inheritance	Cognitive	Hyperactive or ADHD	Social difficulties	Other behavioral difficulties		Motor delay	Facial dysmorphism	Seizures or EEG abnormalities
DNA03-00335	14 years	М	p.lle822Tyrfs*13	De novo	Normal IQ			+	+	+	+	
DNA-008897	73 years	M	p.Leu411Glyfs*6		Profound ID		+	+	+	+	+	
Troina 1274	19 years	M	p.Trp532*	De novo	Severe ID			+	+	+	+	-
Troina 1512	17 years	M	p.Ser1011*	De почо	MIId ID	+ (3y 8m)	+		+	+	+	-
Troina 3097	34 years	F	p.Arg143Valls*64		Severe ID				+	+	+	+
DNA11-21308Z	36 years	F	p.Arg625*		Mild to moderate ID	+	+	+	+	+	+	
DNA11-19324Z	9 years	F	p.Arg626*		2- to 2.5-year delay at 9 years old				+	-	+	-
DNA08-08272	9 years	M	p.Gly15Argfs*47		MIId ID	+		+	+	+	+	
Rauch et al.	13 years	F	p.Lys592*		MIId ID	+	+		+	-	+	2.50
9886269	5 years	M	Deletion	De novo	Global delay	+			+	+	+	+
Marseglia et al.	15 years	M	Deletion	De почо	MIId ID	+	+	+	+	+	+	+
Filges et al. pt. 1	7 years	M	Deletion	De почо	Moderate ID				+	+	+	+
Filges et al. pt. 2		M	Deletion	De почо					+	+	+	

ID, intellectual disability; EEG, electroencephalogram; M, male; F, female.

Table 1. Major clinical findings in 51 individuals with germline mutations in SETBP1. NA stands for "Not Assessed",

Residue affected in SETBP1	E862	\$867 2 F	D868 8F:7 M	\$869 2F	G870 5F: 10M	1871 6F:9M	1M	All degron-affecting mutations (868–871)	
Male(M):female(F)	1F							218	26M
Craniofacial findings									
Microcephaly	1/1	1/2	10/12	1/2	10/13	8/11	0/1	29/39	74.4%
SGS facial gestalt	0/1	2/2	15/15	2/2	15/15	15/15	0/1	47/47	100.0%
Congenital anomalies									
Hydronephrosis	0/1	0/2	15/15	2/2	14/15	14/15	0/1	45/47	95.7%
Genital abnormalities	1/1	0/2	14/15	1/2	14/15	12/13	0/1	41/45	91.1%
Cardiac defects	0/1	1/2	10/15	1/2	4/13	5/13	0/1	20/43	46.5%
Tracheo/laryngomalacia	0/1	0/1	3/4	0/2	3/8	2/2	0/1	8/16	50.0%
Inguinal hernia	0/1	0/1	2/4	0/2	6/8	0/1	0/1	8/15	53.3%
Alacrima	0/1	2/2	6/10	0/2	7/9	6/6	0/1	19/27	70.4%
Neurode velopmental anomalies									
Developmental delay	1/1	2/2	14/14	2/2	13/13	10/10	1/1	39/39	100.0%
Seizures	0/1	2/2	15/15	2/2	13/14	12/13	0/1	42/44	95.5%
Spasticity and/or hypertonia	0/1	1/1	4/4	1/2	8/10	4/4	1/1	17/20	85.0%
Vision impairment	1/1	1/1	7/10	1/2	7/8	5/6	0/1	20/26	76.9%
Hearing impairment	0/1	0/1	9/9	0/1	7/8	8/9	0/1	24/27	88.9%
Progressive failure to thrive	0/1	0/1	10/11	1/2	13/13	8/9	0/1	32/35	91.4%
Brain MRI/CT									
Ventriculomegaly	0/1	NA	6/12	2/2	11/14	7/14	0/1	26/42	61.9%
Underdeveloped corpus callosum	0/1	NA	9/11	0/2	12/13	10/12	0/1	31/38	81.6%
Cortical atrophy or dysplasia	0/1	NA	8/10	0/2	7/10	3/11	1/1	18/33	54.5%
Choroid plexus cysts	0/1	NA	2/9	0/2	8/10	3/10	0/1	13/31	41.9%
Radiological findings					17 2.4				
Scierotic base of skull or mastoid	NA	NA	9/10	0/1	5/5	5/7	NA.	19/23	82.6%
Hypoplastic distal phalanges	0/1	NA	8/9	0/1	8/9	5/6	NA.	21/25	84.0%
Broad ribs	0/1	NA	10/13	2/2	6/7	9/9	NA.	27/31	87.1%
Hyp oplastic/underossified public bones	0/1	NA	6/7	2/2	4/5	66	NA.	18/20	90.0%
Tumors	0/1	0/2	5/11	0/2	1/11	1/9	0/1	7/33	212%

https://doi.org/10.1371/jpurnal.pgen.1006683.t001

Variants in SETBP1 Mutations Observed

Protein Change	Number of Individuals
His523LeuFs*32	1
Gly588AspFs*42	1
Arg589*	1
Ser608AlaFs*22	1
Asp874Gly (uncertain)	1

Developmental and Behavioral Diagnoses (5 children)

Condition	Number of Children
Developmental Delay and Intellectual Disability	5
Language Impairment	5
Autism Spectrum Disorder	1
ADHD	4

Parent report of medical history

(5 individuals, ages 6-14 years)

Newborn Birth Issues

Medical Condition	Number of Children
Respiratory Distress	1
Jaundice	2
Requiring Phototherapy	1

Newborn Issues

Medical Condition	Number of Children
Poor suck	3
Low tone/Floppy	3
Feeding difficulties	2

Neurological Issues

Medical Condition	Number of Children
Motor	
Uncoordinated	1
Low muscle tone	4
Small head size	1
Cerebral Palsy	1
Tremor	1

Vision Problems

Medical Condition	Number of Children
Nearsighted, Astigmatism	1
Farsighted	1

^{*} Corrected with glasses

Gastrointestinal Issues

Medical Condition	Number of Children
Reflux (heartburn)	3
Constipation	1
Diarrhea	2

Infections

Medical Condition	Number of Children
Ear infections	3
Requiring PE tubes	2

Lung Issues

Medical Condition	Number of Children
Asthma	1

Heart Issues

Medical Condition	Number of Children
Aortic Regurgitation	1

Kidney/Urinary Issues

Medical Condition	Number of Children
Renal agenesis,	
Hydronephrosis	1

Genital Issues

Medical Condition	Number of Children
Undescended Testicles	3
Hypospadias	1

Endocrinological Issues

Medical Condition	Number of Children
Difficulty gaining weight	2
Short stature	1

Bone Issues

Medical Condition	Number of Children
Scoliosis	1

Surgeries

Medical Condition	Number of Children
Tonsillectomy	1
PE Tubes/Adenoidectomy	2
Cleft repair	1
Orchiopexy	2
Hypospadias repair	1

Special Diets

Medical Condition	Number of Children
Gluten Free	3
Casein Free	1
Lactose Free	2
Specific Food Allergy	1

Current Medication Use (4 individuals)

Medication	Number of Children
ADHD	4
Stimulants (Ritalin, Metadate, Focalin)	3
Non Stimulants (Clonidine, Guanfacine)	2
Antiepileptic (for tremors)	1
Reflux	1
Constipation	1

Response to ADHD Medication

- Four children, ages 7-14 reported being on medication for ADHD
- Of these four, one indicated that Metadate was the most effective medication in treating his ADHD symptoms
- Another identified Focalin as the most effective ADHD medication tried
- Other medications taken long term (~3 years or more) include **Ritalin** and **Intuniv**. Longer-term use may indicate some success in the treatment of ADHD symptoms.

Range of Adaptive Functioning Based on parent report on Vineland Adaptive Behavior Scales-II Children ages 6 to 14 years

Domain	Range of Functioning Level	Representative Skills
Expressive Language	18 mos To 5 years	Says one-word requests Tells about experiences in detail
Self-Care	2½ years To 4½ years	Can use the toilet Buttons small buttons correctly

Unanswered Questions

- Some topics we hope to be able to more fully address over time:
 - Changes with age and long-term prognosis for individuals with a SETBP1 mutation
 - Acquisition and level of language
 - Developmental milestones
 - More details about effective treatments
 - The presence of autistic traits or "autism-like" features in the absence of a full ASD diagnosis
 - Sensory issues

Summary

- Developmental delay
- Language impairment
- ADHD
- Low muscle tone
- Undescended testicles
- Intestinal reflux

Notable absence of seizures, regression, cancer

Gene Therapy & Genome Editing


Promising individualized medicine

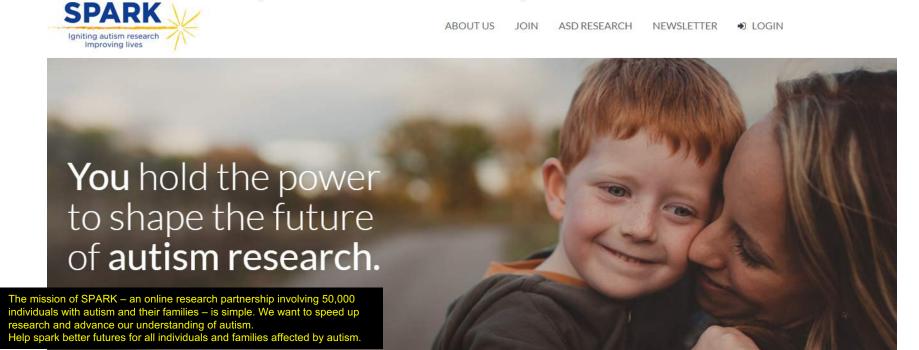
- Are we there yet?
 - Not quite for most conditions
 - Recent developments in research advanced the field

Gene editing

- Edit the genetic code making a new generation of medical treatments possible.
- Can be done precisely but there are challenges.
- New and untested in humans

What can families do?

- Organize the families: family networking/Facebook page
- Family meeting
- Standardized clinical data collection
 - Genetic test reports
 - Medical history interview
 - Medical record review
 - Vineland
 - Sample biorepository (blood/skin) for researchers


Next steps

- Increase the number of identified individuals and confirm the correct diagnosis
 - Work other medical conditions doing the same thing
- Care until the cure
 - Understand the natural history and document it well
 - Learn practical tips from each other
- Understand molecular mechanism
- Develop reagents to enable researchers and make the reagents widely available
 - Cell lines
 - Mice
- Determine if the condition is reversible and if so when
- Learn from other diseases.

SPARK will help to identify more families

JOIN SPARK!

SPARKforAutism.org

Questions?

Medical Management of Neurodevelopmental Concerns in SETBP1 Disorder

Siddharth Srivastava, M.D.
siddharth.srivastava@childrens.harvard.edu
Department of Neurology
Boston Children's Hospital

Simons VIP SETBP1 Virtual Family Meeting January 13, 2018

Outline

- Background
- Motor Impairment
- Intellectual Disability
- Language Disorders
- Attention Deficit Hyperactivity Disorder
- Anxiety/Depression
- Aggression/Self-Injury
- Restrictive, Repetitive Behaviors
- Conclusions

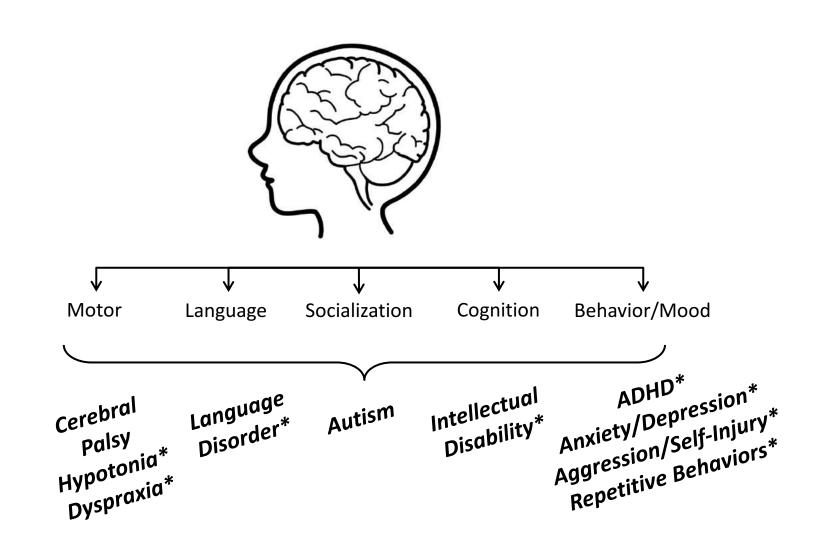
 Non-medication interventions can be effective too, but I will try to focus on medications for this talk

 The information presented here is a combination of anecdotal and observational data from individuals with SETBP1 Disorder, and extrapolated data from other neurodevelopmental disorders

• In general, there is a great need for **evidence-based** research on neurobehavioral interventions for SETBP1 Disorder

Background

SETBP1 Disorder


- SETBP1 Disorder is associated with distinct facial features and full spectrum of neurodevelopmental disorders
 - intellectual disability
 - attention deficit hyperactivity disorder
 - autism spectrum disorder
 - hypotonia
 - delayed motor development

Significance

- Challenging behaviors and developmental concerns can affect the quality of life for individuals with SETBP1 Disorder and their families
- Addressing these concerns early on through medications, therapies, or other interventions – may help optimize long-term neurodevelopmental outcomes

Q3 - Is you child currently taking medication to manage developmental or behavioral challenges?

Development

Motor Impairment

Motor Impairment

- Hypotonia
 - Hypotonia refers to low muscle tone
 - It is a non-specific finding

- Developmental coordination disorder (DCD) / Dyspraxia
 - DCD affects one's ability to learn and execute coordinated motor skill
 - DCD significantly impacts a child's functioning
 - These difficulties are not due to cognitive/visual impairment

Motor Impairment in SETBP1 Disorder

Q1 - Which developmental/behavioral target symptoms are most important for medicational therapy to improve in your child? Select all that apply.

Answer	%	Count	
Lack of effective communication	10.87%	5	
Sensory integration issues	4.35%	2	
Learning deficits	13.04%	6	
Sleep disturbances	4.35%	2	67%
Motor control/coordination challenges	13.04%	6	67% N = 6/9
Seizure control	4.35%	2	N = 6/9
Aggressive, self-injurious, and/or explosive behavior	4.35%	2	
Processing speed	13.04%	6	
Anxiety	6.52%	3	
Hyperactive, impulsive, and/or inattention behaviors	15.22%	7	
Restricted, repetitive behaviors	4.35%	2 1	
Depression and/or bipolar symptoms	2.17%		
Other (please specify)	4.35%	2	2
Total	100%	46	

Motor Impairment in SETBP1 Disorder

"Global motor planning difficulties - Every aspect of my son's life is impacted by his motor planning difficulties. It has impacted his ability to learn to sit up, crawl, walk, sign language, talk, run, play games, write, and learn any new skill."

Motor Impairment Treatment

DCD / Dyspraxia

- Occupational therapy
- Speech/language therapy
- Physical therapy/hippotherapy
- Assistive technology

Hypotonia

Physical therapy/hippotherapy

Intellectual Disability (ID)

Cognition

Cognition refers to our innate problem-solving abilities

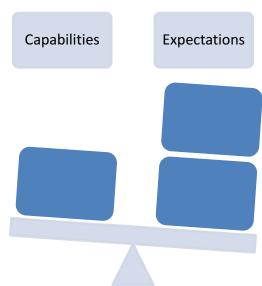
IQ testing is one way of assessing cognitive abilities

IQ Testing

WISC-IV Scale	Score
Verbal Comprehension Index	60
Perceptual Reasoning Index	60
Working Memory Index	70
Processing Speed Index	70
Full Scale IQ	65

Developmental Age = (Full Scale IQ * Actual Age) / 100

For example, a 5 year old with a full scale IQ of 65 will have thinking skills of a 3.25 year old [(5 * 65) / 100]


ID

- ID is defined by the following:
 - Full scale IQ < 70</p>
 - Corresponding impairment in self-help skills

IQ is not necessarily static

ID in SETBP1 Disorder

- A wide range of ID can occur with SETBP1 Disorder
 - Mild: Full scale IQ 50 to 70
 - Moderate: Full scale IQ 35 to 50
 - Severe: Full scale IQ 20 to 35
- SETBP1 Disorder is non-progressive disorder
- There are no ID-specific treatments for SETBP1 Disorder
- An imbalance between academic expectations and intrinsic cognitive capabilities can create problems

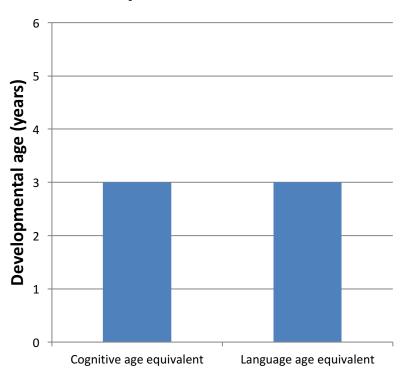
Language Disorders

Language

Language affects our ability to interface with the rest of the world (e.g., socialize, communicate)

Expressive Language

Receptive Language


Ability to communicate

Ability to understand

Language and Cognition

Intellectual Disability

6 year old, IQ = 50

Intellectual Disability PLUS Language Disorder

Language in SETBP1 Disorder

Q1 - Which developmental/behavioral target symptoms are most important for medicational therapy to improve in your child? Select all that apply.

	Count	%	Answer
	5	10.87%	Lack of effective communication
	2	4.35%	Sensory integration issues
	6	13.04%	Learning deficits
	2	4.35%	Sleep disturbances
	6	13.04%	Motor control/coordination challenges
N = .	2	4.35%	Seizure control
	2	4.35%	Aggressive, self-injurious, and/or explosive behavior
	6	13.04%	Processing speed
	3	6.52%	Anxiety
	7	15.22%	Hyperactive, impulsive, and/or inattention behaviors
	2	4.35%	Restricted, repetitive behaviors
	1	2.17%	Depression and/or bipolar symptoms
	2	4.35%	Other (please specify)
	46	100%	Total

Language Disorders Treatment

AAC

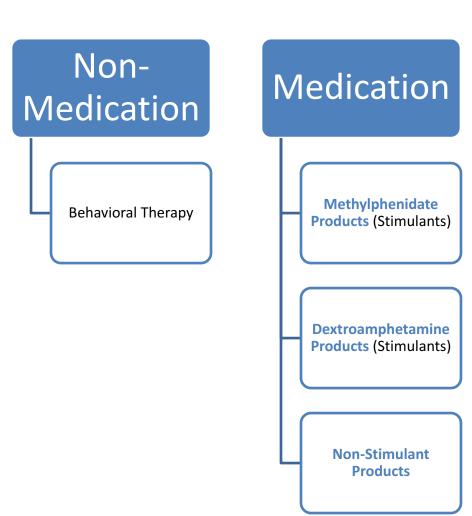
- AAC refers to the use of special devices that allow children to communicate even in the absence of spoken speech
- These devices can be high tech or low tech
- AAC is especially useful for children who are nonverbal

Attention Deficit Hyperactivity Disorder (ADHD)

ADHD in SETBP1 Disorder

Q1 - Which developmental/behavioral target symptoms are most important for medicational therapy to improve in your child? Select all that apply.

	Count	%	Answer
	5	10.87%	Lack of effective communication
	2	4.35%	Sensory integration issues
	6	13.04%	Learning deficits
78% N = 7/9	2	4.35%	Sleep disturbances
NI - 7/0	6	13.04%	Motor control/coordination challenges
N = 7/9	2	4.35%	Seizure control
	2	4.35%	Aggressive, self-injurious, and/or explosive behavior
	6	13.04%	Processing speed
	3	6.52%	Anxiety
	7	15.22%	Hyperactive, impulsive, and/or inattention behaviors
	2	4.35%	Restricted, repetitive behaviors
	1	2.17%	Depression and/or bipolar symptoms
	2	4.35%	Other (please specify)
	46	100%	Total


ADHD

 ADHD is characterized by impairment of attention, distractibility, hyperactivity, and impulsivity

 Symptoms must be present in two or more settings (e.g., home, school)

• Symptoms must cause functional impairments (e.g., social, academic)

ADHD Treatment

Treatment may require a trial-and-error approach

Step 1 Stimu

 Methylphenidate, Amphetamine, or Non-Stimulant

Step 2

 Methylphenidate, Amphetamine, or Non-Stimulant (Choose medication not used in Step 1)

Step 3

 Methylphenidate, Amphetamine, or Non-Stimulant (Choose medication not used in Steps 1 or 2)

"Start low, go slow"

Main side effects are decreased appetite, disrupted sleep

 Wait at least 1 week before deciding whether a new medication or dose change is ineffective

	Pill (can't crush/chew)	Capsule (can open up and sprinkle onto food)	Chewable Pill (can chew)	Liquid	Patch
METHYLPHENIDATE	PRODUCTS				
Short Acting	Focalin Ritalin	Methylin N Chewable		Methylin Solution	
Long Acting	Concerta Ritalin SR	Focalin XR Ritalin LA Metadate CD		Quillivant XR	Daytrana
AMPHETAMINE PRO	DUCTS				
Short Acting	Adderall			ProCentra	
Long Acting	Vyvanse Dexedrine	Adderall XR			
NON-STIMULANT PR	RODUCTS				
Short Acting	Clonidine Guanfacine				
Long Acting	Gunfacine ER Clonidine ER Atomoxetine				Clonidine patch

Q9 - If your child had an improvement, please provide the specific medication name and a description of the improvements:

"[stimulants]. These medications improve his hyperactive and impulsive behavior. "

"Adderall. Was on this for several years, kept him calm and focused"

"Ritalin and Intuniv. Better attention and focus at school. No real impact at home. Intuniv is very hard to swallow every morning."

From 4 individuals (7-14) in the Simons VIP registry, 1 indicated **Metadate** was most effective, and another indicated that **Focalin** was most effective

Q5 - If your child had an adverse effect or poor response, please provide the specific medication name and description of adverse effect or poor response:

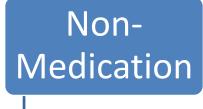
"[stimulants]. He metabolizes them too fast. The dosage doesn't last as long as it should."

"Hyper sensibility with Vyvanse and Adderall"

Anxiety/Depression

Anxiety/Depression in SETBP1 Disorder

Q1 - Which developmental/behavioral target symptoms are most important for medicational therapy to improve in your child? Select all that apply.


	Count	%	Answer
	5	10.87%	Lack of effective communication
	2	4.35%	Sensory integration issues
	6	13.04%	Learning deficits
33%	2	4.35%	Sleep disturbances
N = 3/9	6	13.04%	Motor control/coordination challenges
N = 3/5	2	4.35%	Seizure control
	2	4.35%	Aggressive, self-injurious, and/or explosive behavior
	6	13.04%	Processing speed
	3	6.52%	Anxiety
	7	15.22%	Hyperactive, impulsive, and/or inattention behaviors
	2	4.35%	Restricted, repetitive behaviors
	1	2.17%	Depression and/or bipolar symptoms
	2	4.35%	Other (please specify)
	46	100%	Total

Anxiety/Depression

 Symptoms can include irritability, excessive worry, perseveration, social avoidance

 Anxiety and depression can be difficult to recognize, especially with increasing levels of intellectual disability associated with SETBP1 Disorder

Anxiety/Depression Treatment

Exploration of Exacerbating Factors

Medication

Selective Serotonin Reuptake Inhibitors

- Fluoxetine
- Sertraline

Other Antidepressants (SNRIs, NRIs, NDRIs)

- Duloxetine
- Mirtazapine
- $\bullet Buproprion$

Benzodiazepines

- Alprazolam
- •Lorazepam

Anxiety/Depression Medications

 A low-dose of a selective serotonin reuptake inhibitors (SSRI) may help anxiety and mood issues in SETBP1 Disorder

CAVEAT: SSRIs can lead to behavioral activation and worsening agitation in some individuals

 It may be prudent to avoid benzodiazepines for the management of anxiety due to risk of dependency and paradoxical agitation

Aggression/Self-Injury

Aggression/Self-Injury in SETBP1 Disorder

Q1 - Which developmental/behavioral target symptoms are most important for medicational therapy to improve in your child? Select all that apply.

	Count	%	Answer
	5	10.87%	Lack of effective communication
	2	4.35%	Sensory integration issues
	6	13.04%	Learning deficits
22% N = 2/	2	4.35%	Sleep disturbances
N = 2	6	13.04%	Motor control/coordination challenges
N = 2/	2	4.35%	Seizure control
	2	4.35%	Aggressive, self-injurious, and/or explosive behavior
	6	13.04%	Processing speed
	3	6.52%	Anxiety
	7	15.22%	Hyperactive, impulsive, and/or inattention behaviors
	2	4.35%	Restricted, repetitive behaviors
	1	2.17%	Depression and/or bipolar symptoms
	2	4.35%	Other (please specify)
	46	100%	Total

Aggression/Self-Injury

 Aggressive/self-injurious behaviors include head-banging, hand-biting, and excessive scratching

 They can be a source of significant parental distress for families affected by SETBP1 Disorder

Aggression/Self-Injury Treatment

 Aggressive, self-injurious behaviors require a full behavioral assessment in order to identify triggers

 Sometimes undiagnosed medical problems – such as reflux, dental issues – can worsen aggression/self-injury

Aggression/Self-Injury Medications

 Second-generation neuroleptics (such as risperidone) may be an option for SETBP1 Disorder

 Other second-generation neuroleptics to consider include aripiprazole, quetiapine, and olanzapine

• In some individuals, a mood stabilizer (valproate, lithium) may be beneficial, though the data is limited

Aggression/Self-Injury Medications

CAVEAT: Second-generation neuroleptics are potent medications, with potential for serious side effects, such as metabolic syndrome and weight gain

- "Abilify (aripiprazole). Child became very, very violent"
- "with too much risperidone he became drowsy and absent"
- "Risperidone: asks for food all day"

Restrictive, Repetitive Behaviors

Restrictive, Repetitive Behaviors in SETBP1 Disorder

Q1 - Which developmental/behavioral target symptoms are most important for medicational therapy to improve in your child? Select all that apply.

Answer	%	Count	
Lack of effective communication	10.87%	5	
Sensory integration issues	4.35%	2	
Learning deficits	13.04%	6	
Sleep disturbances	4.35%	2	22%
Motor control/coordination challenges	13.04%	6	N = 2/9
Seizure control	4.35%	2	N = 2/9
Aggressive, self-injurious, and/or explosive behavior	4.35%	2	
Processing speed	13.04%	6	
Anxiety	6.52%	3	
Hyperactive, impulsive, and/or inattention behaviors	15.22%	7	
Restricted, repetitive behaviors	4.35%	2	
Depression and/or bipolar symptoms	2.17%	1	
Other (please specify)	4.35%	2	
Total	100%	46	

Restrictive, Repetitive Behaviors

 Repetitive behaviors include stereotyped motor movements, insistence on sameness, and compulsive and ritualistic behaviors

 Repetitive behaviors occur with higher frequency in autism and severe intellectual disability, which can occur in SETBP1 Disorder

 Social demand and the presence of anxiety may worsen repetitive behaviors

Restrictive, Repetitive Behaviors Medications

 A low-dose SSRI (e.g. fluoxetine, sertraline) may help repetitive behaviors in SETBP1 Disorder

CAVEAT: SSRIs can lead to behavioral activation and worsening agitation in some individuals

 For difficult cases leading to significantly disruptive behaviors, one could consider augmenting an SSRI with a second-generation neuroleptic (e.g. risperidone)

Conclusions

- There is a spectrum of neurodevelopmental disorders associated with SETBP1 Disorder:
 - Intellectual Disability
 - ADHD
 - Language Disorder
 - Autism
 - Hypotonia
 - Motor impairment
- Identifying the target behavioral symptom(s) can help tailor medication management:
 - Hyperactivity
 - Anxiety/Depression
 - Aggression/Self-Injury
 - Repetitive Behaviors
- There is a great need to study what medications work and don't work for individuals with SETBP1
 Disorder

SETBP1 Clinic

Location: Boston Children's Hospital

- Goals:
 - 1. Optimize long-term neurodevelopmental outcomes
 - 2. Coordinate specialty care across multiple disciplines
- The clinic would help address:
 - neurological concerns (e.g., seizures)
 - developmental/behavioral concerns (e.g., autism, intellectual disability, and behavioral challenges)
 - educational concerns
 - questions about treatments (e.g., applied behavior analysis therapy and other developmental services)
- The clinic would form partners with physicians in other departments for referrals and coordination of care
- There would be opportunities to participate in research including bio banking

Acknowledgements

Hayley Oyler and the SETBP1 families

Dr. Wendy Chung and the Simons VIP Project

• Dr. Mustafa Sahin

Questions?